
Figure 9.5 The same forces are applied at other points and the stick rotates—in fact, it experiences an accelerated rotation. Here

but the system is not at equilibrium. Hence, the is a necessary—but not sufficient—condition for achieving equilibrium.

9.2 The Second Condition for Equilibrium

Several familiar factors determine how effective you are in opening the door. See Figure 9.6. First of all, the larger the force, the
more effective it is in opening the door—obviously, the harder you push, the more rapidly the door opens. Also, the point at
which you push is crucial. If you apply your force too close to the hinges, the door will open slowly, if at all. Most people have
been embarrassed by making this mistake and bumping up against a door when it did not open as quickly as expected. Finally,
the direction in which you push is also important. The most effective direction is perpendicular to the door—we push in this
direction almost instinctively.

Torque
Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of
inertia, angular momentum and torque. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/
legacy/torque)

Torque
The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a constant
angular velocity). A rotating body or system can be in equilibrium if its rate of rotation is constant and remains unchanged
by the forces acting on it. To understand what factors affect rotation, let us think about what happens when you open an
ordinary door by rotating it on its hinges.
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Figure 9.6 Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed from

overhead). Torque has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that the door will

rotate in a counterclockwise due to . Note that is the perpendicular distance of the pivot from the line of action of the force. (b) A

smaller counterclockwise torque is produced by a smaller force acting at the same distance from the hinges (the pivot point). (c) The

same force as in (a) produces a smaller counterclockwise torque when applied at a smaller distance from the hinges. (d) The same force as

in (a), but acting in the opposite direction, produces a clockwise torque. (e) A smaller counterclockwise torque is produced by the same

magnitude force acting at the same point but in a different direction. Here, is less than . (f) Torque is zero here since the force just pulls

on the hinges, producing no rotation. In this case, .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical quantity
called torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in changing or
accelerating a rotation (changing the angular velocity over a period of time). In equation form, the magnitude of torque is
defined to be

where (the Greek letter tau) is the symbol for torque, is the distance from the pivot point to the point where the force is
applied, is the magnitude of the force, and is the angle between the force and the vector directed from the point of
application to the pivot point, as seen in Figure 9.6 and Figure 9.7. An alternative expression for torque is given in terms of the
perpendicular lever arm as shown in Figure 9.6 and Figure 9.7, which is defined as

so that
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Figure 9.7 A force applied to an object can produce a torque, which depends on the location of the pivot point. (a) The three factors , ,

and for pivot point A on a body are shown here— is the distance from the chosen pivot point to the point where the force is applied,

and is the angle between and the vector directed from the point of application to the pivot point. If the object can rotate around point A,

it will rotate counterclockwise. This means that torque is counterclockwise relative to pivot A. (b) In this case, point B is the pivot point. The

torque from the applied force will cause a clockwise rotation around point B, and so it is a clockwise torque relative to B.

The perpendicular lever arm is the shortest distance from the pivot point to the line along which acts; it is shown as a
dashed line in Figure 9.6 and Figure 9.7. Note that the line segment that defines the distance is perpendicular to , as its
name implies. It is sometimes easier to find or visualize than to find both and . In such cases, it may be more convenient
to use rather than for torque, but both are equally valid.

The SI unit of torque is newtons times meters, usually written as . For example, if you push perpendicular to the door with
a force of 40 N at a distance of 0.800 m from the hinges, you exert a torque of 32 N·m(0.800 m × 40 N × sin 90º) relative to the
hinges. If you reduce the force to 20 N, the torque is reduced to , and so on.

The torque is always calculated with reference to some chosen pivot point. For the same applied force, a different choice for the
location of the pivot will give you a different value for the torque, since both and depend on the location of the pivot. Any
point in any object can be chosen to calculate the torque about that point. The object may not actually pivot about the chosen
“pivot point.”

Note that for rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to
the chosen pivot point, as illustrated for points B and A, respectively, in Figure 9.7. If the object can rotate about point A, it will
rotate counterclockwise, which means that the torque for the force is shown as counterclockwise relative to A. But if the object
can rotate about point B, it will rotate clockwise, which means the torque for the force shown is clockwise relative to B. Also, the
magnitude of the torque is greater when the lever arm is longer.

Now, the second condition necessary to achieve equilibrium is that the net external torque on a system must be zero. An external
torque is one that is created by an external force. You can choose the point around which the torque is calculated. The point can
be the physical pivot point of a system or any other point in space—but it must be the same point for all torques. If the second
condition (net external torque on a system is zero) is satisfied for one choice of pivot point, it will also hold true for any other
choice of pivot point in or out of the system of interest. (This is true only in an inertial frame of reference.) The second condition
necessary to achieve equilibrium is stated in equation form as

where net means total. Torques, which are in opposite directions are assigned opposite signs. A common convention is to call
counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure 9.8, they satisfy the two conditions for equilibrium. Most people have
perfect intuition about seesaws, knowing that the lighter child must sit farther from the pivot and that a heavier child can keep a
lighter one off the ground indefinitely.

9.6

352 Chapter 9 • Statics and Torque

Access for free at openstax.org.



Figure 9.8 Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther from the pivot to create a

torque equal in magnitude to that of the heavier child.

EXAMPLE 9.1

She Saw Torques On A Seesaw
The two children shown in Figure 9.8 are balanced on a seesaw of negligible mass. (This assumption is made to keep the example
simple—more involved examples will follow.) The first child has a mass of 26.0 kg and sits 1.60 m from the pivot.(a) If the second
child has a mass of 32.0 kg, how far is she from the pivot? (b) What is , the supporting force exerted by the pivot?

Strategy

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second condition (regarding
torques) must be used, since the first (regarding only forces) has no distances in it. To apply the second condition for
equilibrium, we first identify the system of interest to be the seesaw plus the two children. We take the supporting pivot to be
the point about which the torques are calculated. We then identify all external forces acting on the system.

Solution (a)

The three external forces acting on the system are the weights of the two children and the supporting force of the pivot. Let us
examine the torque produced by each. Torque is defined to be

Here , so that for all three forces. That means for all three. The torques exerted by the three forces are
first,

second,

and third,

Note that a minus sign has been inserted into the second equation because this torque is clockwise and is therefore negative by
convention. Since acts directly on the pivot point, the distance is zero. A force acting on the pivot cannot cause a rotation,
just as pushing directly on the hinges of a door will not cause it to rotate. Now, the second condition for equilibrium is that the
sum of the torques on both children is zero. Therefore
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or

Weight is mass times the acceleration due to gravity. Entering for , we get

Solve this for the unknown :

The quantities on the right side of the equation are known; thus, is

As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force . The easiest way to find it is to use the first condition for equilibrium, which is

The forces are all vertical, so that we are dealing with a one-dimensional problem along the vertical axis; hence, the condition
can be written as

where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus and minus signs to
indicate the directions of the forces, we see that

This equation yields what might have been guessed at the beginning:

So, the pivot supplies a supporting force equal to the total weight of the system:

Entering known values gives

Discussion

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of the two children.
Part (b) can also be solved using the second condition for equilibrium, since both distances are known, but only if the pivot point
is chosen to be somewhere other than the location of the seesaw’s actual pivot!

Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point around which
torques are calculated simplified the problem. Since is exerted on the pivot point, its lever arm is zero. Hence, the torque
exerted by the supporting force is zero relative to that pivot point. The second condition for equilibrium holds for any choice
of pivot point, and so we choose the pivot point to simplify the solution of the problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This will not always be
the case. Always enter the correct forces—do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each force were exerted
at a single point. This is not an approximation—the distances and are the distances to points directly below the center of
gravity of each child. As we shall see in the next section, the mass and weight of a system can act as if they are located at a single
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point.

Finally, note that the concept of torque has an importance beyond static equilibrium. Torque plays the same role in rotational
motion that force plays in linear motion. We will examine this in the next chapter.

9.3 Stability
It is one thing to have a system in equilibrium; it is quite another for it to be stable. The toy doll perched on the man’s hand in
Figure 9.9, for example, is not in stable equilibrium. There are three types of equilibrium: stable, unstable, and neutral. Figures
throughout this module illustrate various examples.

Figure 9.9 presents a balanced system, such as the toy doll on the man’s hand, which has its center of gravity (cg) directly over the
pivot, so that the torque of the total weight is zero. This is equivalent to having the torques of the individual parts balanced
about the pivot point, in this case the hand. The cgs of the arms, legs, head, and torso are labeled with smaller type.

Figure 9.9 A man balances a toy doll on one hand.

A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a
direction opposite to the direction of the displacement. For example, a marble at the bottom of a bowl will experience a restoring
force when displaced from its equilibrium position. This force moves it back toward the equilibrium position. Most systems are
in stable equilibrium, especially for small displacements. For another example of stable equilibrium, see the pencil in Figure
9.10.

Take-Home Experiment
Take a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance on the round
side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where would you need to put two
pennies to balance? Three pennies?
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